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Abstract: Temperature is a crucial factor for clinker quality in the Industrial Rotary Alumina Kiln Process 
(IRAKP). However, the characteristic of the high temperature, complex kinetics, multivariable, non-linear 
reaction kinetics, long-time delayed reaction and various raw materials make it difficult to accurately control 
the temperature in IRAKP through an existing control technology. This paper proposes a dual-response-
surface-based process control (DRSPC) system for the IRAKP in a novel manner. In the DRSPC, instead of 
the more precise and complicated nonlinear equations, the dual response surface models are fitted to describe 
the reaction kinetics in the IRAKP and track their standard deviations for stable operation purpose. Because a 
simultaneous consideration of multiple control targets could address the problem of unstable operation in 
kilns; the objectives of the DRSPC study are designed as optimizing product quality, minimizing energy 
consumption and temperature fluctuations. Therefore, the proposed DRSPC goals are to achieve a uniform 
quality clinker, a high fuel efficiency, and a long refractory life. A weight optimization approach is used to 
handle these multiple objective functions. The proposed DRSPC can estimate the working conditions of a kiln 
and predict some optimal manipulated variables to the control system in each control time interval for 
improving the efficiency of IRAKP. The DRSPC is applied to a real IRAKP for demonstrating its 
applicability and advantages.  
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1 Introduction 
Industrial Rotary Alumina Kiln is a large-scale 
sintering equipment that broadly applied in 
cement, metallurgical, chemical, and 
environmental protection industries. Because of 
the complicated kinetics, multi-variable 
characters, nonlinear reaction dynamics, long-
delayed reactions and various raw material feed 
features, in a rotary kiln process is naturally hard 
to be simulated and modeled [1- 3]. So far “there 
is no mathematical model that adequately 
reflected the process. and the product quality of 
IRAKP is usually measured after the clinker 
cooling down” [3]. Long-delayed reactions 
seriously affect the online control, and 
consequently has an effect on the product 
quality. It is known that the product quality also 
is greatly influenced by kiln temperatures, 
especially the maximum sintering temperature 
[4]. But the measurement of this maximum 

temperature is extremely difficult due to the high 
combustion temperature (up to 1500 oC), heavy 
dusty environment, and large temperature 
fluctuation in the rotary kiln. Hence, only a few 
successful industrial applications of the kiln 
process control are reported on the open 
literatures [3, 5, 6].   
   The current control technologies for the 
IRAKP include proportional integral-derivative 
(PID) techniques, Artificial Intelligent (AI) 
methods, model predictive controls (MPC), as 
well as some hybrid algorithms. The 
contributions of these technologies include 
product quality improvement, operational 
stabilization, cost reduction, and pollution 
minimization [7]. The PID control is the most 
common technology used in industrial kiln 
applications [4, 8], but it usually works well in a 
stable condition. In the kiln process control, for 
example, it has a slow response to a process 
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upset or frequently uncontrolled disturbances 
[4]. The artificial intelligent control includes 
fuzzy and neural-network techniques. It has 
become a research focus of the kiln process 
control and has been applied in the industrial 
field [2, 9, 10]. The AI control requires a prior 
operational knowledge that highly depends on 
expert experiences, but the prior operational 
knowledge may not exist [7,  
11]. The model predictive control technology 
has been greatly developed in recent decades 
[12-15], successfully applied in industrial kilns 
to cope with the usual dynamic working 
conditions. However, its capability still needs be 
increased, especially for the rapid response to 
some abnormal problems in kilns.  In summary, 
research needs on the process control of rotary 
kilns are still substantial. 
    This paper introduces a distinctive control 
technology, namely Dual-Response-Surface-
based Process Control (DRSPC), to the prectical 
applications of the IRAKP. The primary 
objective of the DRSPC is to optimize product 
quality. To achieve this objective, the values of 
major factors should be controlled within 
allowable ranges. These factors are called 
controlled variables. For example, the maximum 
sintering temperature is a key controlled variable 
in kiln operation. In this DRSPC, Response 
Surface Methodology (RSM) is used to 
approximate the relationships of responses 
(control variables) and input variables (auxiliary 
measurements and manipulated variables), and 
its consequence to search for an optimal set of 
input variables and to optimize the responses by 
using a set of designed experiments [16-18].  
    It is worth to mention that the response 
surface models above are mean quadratic 
empirical models. In order to maintain the 
optimal operation in kilns, the standard 
deviations of responses are considered, and used 
to build standard deviation quadratic empirical 
models. A Dual Response Surface Methodology 
(DRSM) is used in the DRSPC to optimize one 
of two kinds of responses subjected to an 
appropriate constraint given by the other [19-
22]. Obviously, DRSM is derived from RSM 
that can be used to find an optimal set of input 
variables and to optimize the responses in kiln 
operation. The DRSPC only contains quadratic 

nonlinear models rather than other high-order 
(more than second order) nonlinear models, so 
that the optimal solutions can be easily and 
quickly obtained by a commercial solver 
because of fast-convergence [23]. Therefore, the 
DRSPC model can overcome the disadvantage 
of the PID control in industrial kilns to rapidly 
respond to a process upset or frequently 
uncontrolled disturbances. Since the DRSPC 
uses empirical models for control and 
optimization purposes, it can also go over the 
deficiencies of AI control that require expert 
experience. Moreover, due to the empirical 
models characteristics the various working 
conditions and associated optimal control 
operations of an industrial kiln in the previous 
months, the DRSPC can quickly respond to 
numerous unusual instabilities that may not be 
solved by a model predictive control in kilns.  
However, the accuracy of a quadratic empirical 
model would be quite low if it had a large 
number of variables. In practice, a DRSM 
method is generally limited to a maximum of 
seven or eight variables due to the curse 
of dimensionality[24]. So, it is necessary to 
carefully select variables before we fit an 
empirical dataset into DRSM models if the 
number of variables were more than eight. 
    An application is conducted to demonstrate 
the proposed DRSPC. At the very beginning of 
this application, logging was made every 
sampling interval of an IRAKP. The recorded 
data sets are used to fit the response surface 
models that providing an insight into the 
dynamics and nonlinearity of the kiln. By 
applying the DRSPC the forecasting of the kiln’s 
work condition and optimal manipulated 
parameters at each control time interval are 
generated.  

This paper is structured as follows. Section 2 
describes the kiln process. Section 3 presents the 
development of the DRSPC system and its 
advantages. Section 4 demonstrates an 
application of the DRSPC. Section 5 presents the 
conclusion. 

 
2 Description of IRAKP 
An industrial rotary alumina kiln is a direct 
contract heat exchanger. It is a long refractory 
cylindrical vessel with a slight incline from 
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horizontal which slowly rotates around its own 
axis” [7] (as shown in Fig. 1). “The process 
inside of a rotary kiln includes drying, 
preheating, decomposing, burning (sintering), 
and cooling. During the process, raw material 

slurry is fed at the elevated feeding end of the 
kiln and it flows down to the discharge end of 
the rotary kiln due to the kiln’s inclination and 
rotation. Meanwhile, pulverized coal is sprayed 
from a burner-pipe 

 
                                     Figure 1.  Sketch of an industrial rotary alumina kiln 
 
 
with the primary air in the burning zone. Thus, 
heat energy supplied by the combustion of 
pulverized coal is countercurrent transferred to 
the raw material slurry in the kiln. Finally, the 
processed material called clinker is cooled and 
discharged. The clinker quality is customarily 
classified into three categories: over-sintered, 
under-sintered, and normal-sintered” [7]. Since 
the reactions of the kiln process are very 
complex, and the previous mainstream control 
methods have the aforementioned deficiencies 
(discussed in Section 1), an innovative Dual-
Response-Surface-based Process Control 
(DRSPC) system is developed to approximately 
estimate the  dynamic behavior of a real IRAKP 
and to determine optimal sets of manipulated 
parameters.  

3 Methodology 
The development of the proposed DRSPC 
system has following three major steps: (1) Data 

Acquisition, includes data classification, data 
range determination, and experimental design. 
(2) Fitting, fits the dual response surface 
models. (3) Optimization, builds a dual response 
surface based optimization and determine 
manipulated variables [7].  
 

3.1 Data Acquisition 

The difficulties of the IRAKP control are to find 
the significant factors that can stablize the 
temperature fluctuation, and determine their 
ranges.  These imporant factors will be used to 
design an experiment of the IRAKP with 
applying the DRSPC.  Data acquisition is the 
necessary step to identify the significant factors 
and find their ranges. Data acquisition is further  
used for the experiment design of the IRAKP to 
achive the objectives of the DSRPC,  which 
inculde optimizing product quality (the primary 
objective), minimizing temperature fluctuations, 
as well as minimizing energy consumption.  
 
 

3.1.1 Data classification and data rang 

determination  

The ultimate goal of IRAKP control is to 
produce high-quality sintered alumina. Here, the 
quality indexes of sintered alumina are leaching 
rate and particle size which  are measured from 
the clinker outputs, and will be described in 
Section 4 regarding an application. It was found 
that the product quality of sintered alumina is 
greatly influenced by the maximum sintering 
temperature [4, 25]. Hence, the maximum 
sintering temperature (MST) becomes the 
primary online indicator to product quality. It is 
called the controlled variable in the DSRPC.  
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     The MST is a continuous value. It is reported 
that if MST is above the upper bound of 
allowable range, the “over-burning” of clinker 
will be occurred; if MST is below the lower 
bound of allowable range, the “less-burning” of 
clinker can be happened [25]. Both “over-

burning” and “less-burning” products are poor 
quality that has low leaching percentage. Only 
MST fluctuates within an allowable range, the 
kiln can produce qualified products.  Table 1 
demonstrates this allowable range of MST in a 
real industrial rotary alumina

kiln operation. Hence, increasing the allowable 
range of MST can improve product quality and 
efficiency of the kiln. It is found that the range 
of the MST is directly affected by the 
composition of the raw material [25, 27], and the 
most important impact factor is the alumina-
silica. Table 2 demonstrates effects of the 
alumina-silica ratio of the raw material on the 
range of MST and product quality. It shows that 
the higher the ratio of alumina and silica the 
larger the allowable range of MST. It notes that 
an IRAKP usually uses a fixed bauxite mine, the 
composition of the raw material is fixed. Of 
course, if the composition of the raw material 
was changed, the parameters of system would be 
updated correspondingly. 

MST is also affected by the following 
parameters: the fuel flow rate (FR), air flow rate 
(AR), kiln feed rate (KR), temperature at the kiln 
outlet (GTO), kiln rotation speed (RS), thermal 
retention time (TRT) of material, and raw 
material temperature at the kiln inlet (MTI) [25, 
27]. Here, MTI is the most important of the 
above parameters [25, 27]. A constant MTI 
helps to maintain a reasonable thermal 
environment, ensures drying capacity, and 
preheat the raw materials during the operation of 
the rotary kiln. However, it is impossible to 
control MTI to a constant value. The alternative 
method is to maintain MTI in an allowable 

range. Table 1 shows the range of MTI in a real 
operation of an IRAKP. Meanwhile, it is 
reported that MTI is majorly influenced by 
MST, kiln feed rate (KR), pressure at the kiln 
inlet (PI), RS, moisture content of the raw 
material (MR), FR, and AR [25-27]. 
    Yi [25] found that the operation of a rotary 
kiln with high FR, high AR and high RS can 
produce high-quality products. Moreover, 
because the thermal retention time (TRT) is 
controlled by the kiln rotation speed (RS) [25], 
the parameter of RS will be used to replace the 
pareameter of TRT in the proposed model. 

   In summary, MST and MTI are two main 
paramters that will be used as response variables 
in the propused DRSPC. They  will be controled 
in allowable ranges during the IRAKP. The 
aforementioned parameters can be divided into 
the following two categories: (1) response 
variables or control variables, including MST 
and MTI, and (2) independent variables or input 
variables, containing kiln feed rate (KR), fuel 
flow rate (FR), air flow rate (AR), kiln rotation 
speed (RS), pressure at the kiln inlet (PI), gas 
temperature at the kiln outlet (GTO), and 
moisture content of the raw material (MR). 
These parameters are called as independent 
variables and response variables in the DRSPC, 
but they

 

Table 1. Statistical results of the selected parameters [25] 
Name MST 

(°C) 
MTI 
(°C) 

GTO 
(°C) 

FR 

(RPM) 
 KR 

(RPM) 
ΔFR 

(RPM) 
ΔKR 

(RPM) 
Max 1250 308 710 1386  691 79 83 
Min 1055 230 478 1114  494 - 94 -136 

Averag 1174 263 570 1269  600 0 0 
StdDev 21.8 11.9 35.6 29.2  38.9 15.5 14.6 

   MST : maximum sintering temperature, MTI: raw material temperature at kiln inlet, 
                                GTO: gas temperature at kiln outlet,       FR: fuel flow rate, KR: kiln feed rate, 
                                ΔFR: change of the fuel flow rate,           ΔKR: change of the kiln feed rate. 

 
Table 2. Effects of the alumina-silica ratio [25] 

A/S [N/R] [C/S] [F/A] Mean of Range of Leaching percentage (%) 
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MST (°C) MST (°C) ηA ηN 
2.47 0.92 2.07 0.20 1180 1160 - 1200 93.04 93.46 
2.68 0.99 2.11 0.20 1185 1160 - 1210 93.57 94.05 
2.96 0.96 2.10 0.20 1190 1160 - 1220 94.80 93.26 

                  A/S = weight ratio of alumina and silica,  ηA = leaching percentage of alumina 
                     [N/R] = molecular ratio of sodium oxide and (alumina + iron oxide), 
                     [C/S] = molecular ratio of calcium oxide and silica, 
                     [F/A] = molecular ratio of iron oxide and alumina, ηN = leaching percentage of sodium oxide. 

 

are called as input variables and control 
variables in the IRAKP. In practical 
applications, the input variables are also named 
as “auxiliary measurements”. Moreover, some of 
the above input variables are manipulatable, e.g. 
FR, AR, KR, and RS. We are interested in the 
changes of these manipulatable variables, and 
denoted them by ΔFR, ΔAR, ΔKR and ΔRS. 
They are called “manipulated variables” in the 
IRAKP.  
   All the above parameters will be measured and 
collected through the actual IRAKP, which is 
used to construct a dataset. The details of data 
acquisition are described in Section 4.2. Their 
measurement locations are shown in Figure 1. 
 
3.1.2 Experimental design 
Before designing the experiments, the following 
structures of the industrial rotary kiln are 
assumed: (1) the kiln process is continuous, and 
(2) correlations exist among variables.  
    An experiment is designed as follows: (1) 
continuous operating an industrial rotary 
alumina kiln; (2) sampling the work condition 
parameters at every time interval of Δt, where Δt 
is the time between two adjacent samples; (3) 
measuring the product quality by a chemical 
analysis at every time interval of ΔT, where ΔT 

is the time between two adjacent measurements 
of product quality, and ΔT is much longer than 

Δt. 
An appropriate sampling interval of t is 

governed by the dynamics of the process which 
should allow the completion of all data 
samplings, data analysis, optimization 
calculation, and control actions. The designed 
experiments are then used for the development 
of DRSPC. Since the proposed method is an 
empirical model whose purpose is to produce 
satisfactory high quality clinker, this empirical 
model can only be trained with “correct 
operation data”. The correct operation is the 

operation that yields high quality clinker in 
various working conditions. Therefore,  the 
operation data associated with low-quality 
product is useless and will be removed from the 
sampling data.  

 
3.2. Fitting response surface models 

Box and Wilson [29] first applied the Response 
Surface Method in 1952 to research the 
relationship between a response and a set of 
input variables. Vining and Myers [28] fitted two 
second-order polynomial models for the mean 
response and standard deviation of responses 
separately. In their research, the optimization of 
one of the polynomial models subjected to an 
appropriate constraint given by the other [31]. A 
general DRSM model is developed for the 
industrial rotary kiln as follows: 
 

HSShS
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GSSgS
''  oy g                                        (2) 
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where h0 , g0 , h,  g, H and G are the appropriate 
scalars, (k×1) vectors, and (k×k) matrices for the 
estimated coefficients, respectively; y and y  
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are the mean and standard deviation of the MST 
and MTI, respectively; S and S’ are (k×1) 
vectors of the input variables and their transpose, 
respectively. 

For the kiln process control, several sets of 
second-order polynomial models (DRSM 
models) need to be fitted for controlled 
variables. They are the MST main model with its 
standard deviation model, and MTI main model 
with its standard deviation model. The responses 
of the above models are denoted as yMST and 

σMST, yMTI and σMTI, respectively. The input 
variables for both main and standard deviation 
models are same, which include the auxiliary 
measurements (e.g. MST, FR, AR, KR, GTO, RS 
and MTI) and manipulated variables (e.g. ΔFR, 

ΔAR, ΔKR and ΔRS). The manipulated variables 
here refer to the value changes between two 
adjacent sampling intervals. For example, ΔFRi 

= FRi+1 – FRi . The responses and input variables 
in above models correspond to different 
sampling interval. For example, if the current 
sampling interval is i (i = 1, 2, …, n), the input 
variables stand for the current sampling interval 
i and the responses denote the next sample 
interval i+1.  

 
3.3. Dual response surface process control  

Lin and Tu [19] proposed an objective 
minimized function, namely the Mean Squared 
Error (MSE), to find an optimal set of conditions 
such that the mean response will be close to the 
target value, while the standard deviation 
response keeps small. Hence, a dual response 
surface based optimization can avoid misleading 
optimum (which the mean response is close to 
the target value but the standard deviation 
response is large), and then produce robust 
results.  
    In this study, the eventual objective of the 
DRSPC is to optimize product quality. 
According to Yi’ study [25], a simultaneous 
consideration of multiple control targets could 
address the problem of unstable operation.  
Since the clinker quality is highly dependent on 
MST, MTI, and GTO, the primary objective can 
be converted to control these temperatures to 
their target values of TMST, TGTO, and TMTI, 
respectively. We can further convert the primary 
objective to minimize the differences between 

the temperature responses and their target 
temperatures, (yMST   ̶ TMST), (yGTO   ̶ TGTO), and 

(yMTI   ̶ TMTI). Consequently, the second objective 
of the DRSPC is to minimize the standard 
deviations of these temperatures, which are σMST, 
σGTO, and σMTI.  Since the proposed model is for 
an IRAKP in China, a large amount of data 
recorded from this kiln is used for the model 
building.  The analysis of this recorded data 
shows that MST dominates the clinker quality, 
and followed by MTI, but GTO has little impact 
on product quality. Hence, GTO and its standard 
deviation are deleted from the primary and 
secondary objectives. Of course, different kilns 
have different situations, GTO may have an 
important impact on product quality in other 
kilns rather than MTI.  

We also consider about the minimization of 
energy consumption, which can be converted 
minimizing the manipulated variables (e.g. ΔFR, 

ΔAR, ΔKR and ΔRS). Some manipulated 
variables are fixed during the operation such as 
ΔRS, and some manipulated variables are highly 
correlated with each other such as the 
manipulation of ΔAR is dependent on ΔFR. 
Hence, only ΔFR and ΔKR are used in the 
DRSPC. The DRSPC can be formulated as 
follows: 

 
2 2

1
2 2

2
2 2

3

Min [( ) ]

[( ) ( ) ]

[( ) ]

MST MST MST

MTI MTI MTI

f w y T

w FR KR

w y T





  

   

  

               (5a) 

Subject to: 
 

HSShS
''  ohy                                         (5b) 

GSSgS
''  oy g                                      (5c) 

;y y y   L U L US S S                              (5d) 
 
where y and σy are the mean and standard 
deviation responses of the MST and MTI for the 
future step, respectively; TMST and TMTI are the 
targets of the MST and MTI, respectively; ΔFR 
and ΔKR is the predicted change values of the 
fuel flow rate and kiln feed rate, respectively; 

UL SS and are the lower and upper bounds of S; 
w1 to w3 are the weighting factors reflecting 
different priorities in the calcination process. 
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Three weighting factors can be adjusted by the 
Control Laws that are discussed in the next 
section. It is worth mentioning that the Pareto 
Fronts approximation [30] will be applied for the 
multi-objective optimization in our future work. 

4 Proposed Approach Application 

In this section, the proposed DRSPC is 
implemented to demonstrate its ability of 
process control in the complex and dynamic 
operation of kiln. 
 
4.1 Overview of the study rotary kiln  

The study object is an m1105 industrial 
rotary alumina kiln that located at the Alumina 
Corporation of China in Henan province [7]. 
The operation stages of the IRAKP include 
“drying, preheating, decomposing, burning, and 
cooling. The main characteristics in each stage 
are described as follows: (a) in the drying stage, 
most water in the raw material slurry is 
evaporated by gas heat. The temperature of the 
gas in the drying zone consequently drops from 
700～800℃ to 180～250℃, (b) in the 
preheating stage, the temperature of the material 
is increased to 600℃ and some thermal 
decomposition reactions are performed to 
remove crystal water from the raw material, (c) 
in the decomposing stage, the temperature of the 
material is increased to 1000℃, the crystal water 
is continually decomposed and the carbonate 
begins to decompose. Meanwhile, some 
reactions occurred to compose new materials 
such as Na2O·Fe2O3, Na2O·Al2O3, and 
Na2O·Al2O3·2SiO2, (d) in the burning (sintering) 
stage, the temperature of the material is 
increased to 1200～1300℃, and the actual 
temperature of the gas reaches up to 1500℃” [7]. 
The sintering procedure is described by the 
following chemical equations: 
 
Na2O·Al2O3·2SiO2 + 4CaO  

= Na2O·Al2O3 + 2(2CaO·SiO2)                            (6) 
 
2CaO + SiO2 = 2CaO·SiO2                                 (7) 
 
CaO + TiO2 = CaO·TiO2                                    (8) 
 
Final one (e) is the cooling stage, which the 
processed material, called clinker, is cooled and 

discharged. The temperature of the gas in this 
stage is 400～600℃. 

The studying kiln was manually controlled 
with low productivity and unstable product 
quality, which is required to be upgraded. The 
DRSPC was proposed to this IRAKP starting 
from the parameter sampling. 

 
4.2 Sampling 

The working condition parameters of the IRAKP 
were continually sampled from January 23, 2008 
to April 27, 2008 [7]. The sampling interval of 

t  was set as 5.5 minutes. A total of 28,067 sets 
of parameters were recorded. Each set of 
parameters includes the maximum sintering 
temperature (MST), raw material temperature at 
kiln inlet (MTI), gas temperature at the kiln 
outlet (GTO), kiln feed rate (KR), fuel flow rate 
(FR), air flow rate (AR), kiln rotation speed 
(RS), and pressure at the kiln inlet (PI), etc.  Fig. 
2 shows three temperatures of the MST, MTI 
and GTO. However, the temperature cannot 
directly be measured because temperature 
sensors are not available along the rotary kiln. 
Hence, several indirect indicators are used to 
estimate the temperature, which include the 
colorimeter signal and flame image process.  
The flame image process is that use a camera to 
take images of flame, and then convert the 
images into temperature values through an 
image processing algorithm [7].  

The quality of the alumina was measured 
from the clinker outputs and was performed 
every 0.5-hour interval ΔT. High quality alumina 
is porous with a bulk density of 1.2 to 1.45 kg / 
L. According to the results of product quality, 
four periods (shown in Table 3) were selected 
for building the DRSPC model, which includes 
2,400 sets of operational parameters and kiln 
working condition data. The production during 
these four periods meets the quality requirement 
(normal-sintered alumina). The idea of the 
proposed approach is to train the mathematical 
models by the dataset of operational parameters 
and kiln working conditions, and then use these 
trained models in the control process of the 
rotary kiln. Here, the valuable data sets should 
be collected from the correct operations that can 
produce satisfactory quality products in a variety 
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of different working conditions (including 
unstable and long-delayed reactions) to ensure 
that the proposed empirical model is properly 
trained.  

 
Table 3 Four periods selection for building the 

DRSPC model 
Period 1 Period 2 Period 3 Period 4 
Jan. 26, 
2008 ~ 

 Jan. 29, 
2008 

Feb. 15, 
2008 ~ 

 Feb. 18, 
2008 

Mar. 6, 
2008 ~  
Mar. 8, 
2008 

Apr. 9, 
2008 ~ 

 Apr. 11, 
2008 

 

4.3 Dual response surface models 
MST and MTI with their standard deviations are 
chosen as the responses (controlled variables) 
for the dual response surface models. Because 
most of manipulated variables are fixed (or 
allowed a very small fluctuation) in the real 
operation of the kiln [25-28], these fixed 
variables are considered as constants and will be 
removed from the quadratic equations. 
Therefore, only two manipulated variables of 
ΔKR and ΔFR are used  

 
               Figure 2.  Temperatures of the IRAKP 
 

 

in the dual response surface models. Further, 
theoretically the control of the fuel-air ratio is 
very important to combustion efficiency. Due to 
the temperature of the kiln having a small 
fluctuation in a normal working condition of the 
kiln, a fixed fuel-air ratio is enough to provide 
good combustion efficiency [33].  

According to the developed model fitting 
methods, the responses of the MST main (yMST) 
and their standard deviation (σMST) are at the 
next sampling instant; the auxiliary 
measurements (MST, FR, KR, GTO and MTI) 
and manipulated variables (ΔFR and ΔKR) are at 
the current sampling instant. Similarly, the 
responses of the MTI main (yMTI) and standard 
deviation (σMTI) are at the next sampling instant; 
the auxiliary measurements (MTI, FR, KR and 
MST) and the manipulated variables (ΔFR and 

ΔKR) are at the current sampling instant. The 
dual response surface models are fitted by the 

MATLAB function “rstool” using the selected 
data in a confidence level of 05.0 , and 
shown as follows: 

 
104·yMST = 

 – 6621551 – 1225·GTO + 38595·MTI + 9661·MST 

+2703·FR + 46803·ΔFR + 3557·KR – 4003·ΔKR 

– 0.72·GTO·MTI +0.39·GTO·MST + 3.84·GTO·FR 

+8.93·GTO·ΔFR + 0.27·GTO·KR – 6.45·GTO·ΔKR 

– 35.09·MTI·MST + 4.87·MTI·FR – 55.56·MTI·ΔFR     

– 10.11·MTI·KR – 23.51·MTI·ΔKR – 18.19·MST·FR    

+ 8.77·MST·ΔFR – 2.08·MST·KR – 10.06·MST·ΔKR                                                          
– 36.21·FR·ΔFR + 3.86·FR·KR + 20.17·FR·ΔKR         

+ 5.34·ΔFR·KR + 19.81·ΔFR·ΔKR – 1.94·KR·ΔKR 

– 3.7·GTO2 + 5.7·MTI2 + 13.57·MST2 + 5.36·FR2         

– 26.12·ΔFR2 – 3.14·KR2 + 5.28·ΔKR2           

                                                                              (9a) 
R2= 0.994 
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+ 9485740 + 1027·GTO – 4459·MTI – 12546·MST       

– 6·FR – 901·ΔFR – 5992·KR – 7333·ΔKR 

+ 4.2·GTO·MTI – 3.83·GTO·MST – 0.7·GTO·FR          

– 2.69·GTO·ΔFR – 0.13·GTO·KR + 9.97·GTO·ΔKR 

+ 10.24·MTI·MST – 6.9·MTI·FR – 17.12·MTI·ΔFR       

+ 3.69·MTI·KR – 12.88·MTI·ΔKR+ 2.14·MST·FR         

+ 5.07·MST·ΔFR – 0.29·MST·KR – 1.24·MST·ΔKR                                                        
– 0.38·FR·ΔFR + 2.87·FR·KR + 5.27·FR·ΔKR             

+ 2.61·ΔFR·KR -8.96·ΔFR·ΔKR – 0.25·KR·ΔKR 

+ 2.96·GTO2 – 5.72·MTI2 + 3.87·MST2 – 0.69·FR2          

+ 9.53·ΔFR2 + 1.58·KR2 + 5.96·ΔKR2 

                                                                              (9b) 
R2= 0.972 

 
104·yMTI =  

+ 2152806 + 1782·MTI – 133·MST – 2448·FR             

– 1405·ΔFR + 2012·KR + 6926·ΔKR+0.75·MTI·MST 

+ 4.92·MTI·FR – 3.41·MTI·ΔFR + 5.06·MTI·KR           

– 3·MTI·ΔKR– 2.82·MST·FR – 0.31·MST·ΔFR              

+ 0.06·MST·KR + 0.78·MST·ΔKR + 1.76·FR·ΔFR         

– 2.18·FR·KR – 3.64·FR·ΔKR + 0.91·ΔFR·KR              

– 2.57·ΔFR·ΔKR – 4.18·KR·ΔKR– 5.25·MTI2 

+1.54·MST2 + 2.26·FR2 + 0.51·ΔFR2 – 0.5·KR2             

– 4.96·ΔKR2 

                                                                            (10a) 
R2= 0.711 
 

104·σMTI =  

– 254508 + 1461·MTI + 319·MST – 228·FR              

–600·ΔFR + 150·R + 931·ΔKR– 1.55·MTI·MST        

– 1.61·MTI·FR    – 4.44·MTI·ΔFR – 0.22·MTI·KR      

– 5.22·MTI·ΔKR – 1.93·MST·FR + 0.31·MST·ΔFR    

+ 0.12·MST·KR – 1.06·MST·ΔKR +1.12·FR·ΔFR      

– 0.33·FR·KR + 0.25·FR·ΔKR – 0.06·ΔFR·KR           

– 5.66·ΔFR·ΔKR + 2.22·KR·ΔKR + 5.15·MTI2          

+ 1.09·MST2 + 1.19·FR2 – 1.31·ΔFR2 + 0.11·KR2      

– 0.42·ΔKR2 

                                                                            (10b) 
R2= 0.659 

 

where, the term yMST is the response variable of 
sintering temperature, it is related on the input 
variables defined in Equation 9a. We hope that 
yMST equals to the target value of MST which 
means the kiln will produce high-quality clinker. 
Similarly, in Equation 10a, the term yMTI is the 
response variable of the raw material 
temperature at kiln inlet, it is related on the input 
variables defined in Equation 10a. We hope that 

yMTI equals to the target value of MTI which 
means the kiln will produce high-quality clinker. 
The units of the MST, MTI, and GTO are Celsius 
degrees (°C). Because the ΔFR and ΔKR are 

controlled by the flow pumps, the pump speeds 
(RPM) are used as unit for them. Table 1 lists 
the statistical results of selected parameters, 
which include the maximum values, minimum 
values, averages, and standard deviation values. 
R2 is correlation coefficient to measure the 
reliability of these fitted quadratic equations. 
 
4.4. Optimization  

A nonlinear optimization model is generated for 
the IRAKP based on the DRSPC as follows: 
 

])263[(

])()[(])1174[(Min
22

3

22
2

22
1

MTIMTI

MSTMST

yw

KRFRwywf









                                    (11a) 
Subject to: 
 
Equations (9a), (9b), (10a) and (10b)                (11b) 
 
0 ≤ yMST ≤ 1300;   0 ≤ yMTI ≤ 500;   –150 ≤ ΔFR ≤ 
150;    –150 ≤ ΔKR ≤ 150                                      
                                                                      (11c) 
 

The weighting coefficients of w1 to w3 are 
used to reflect the different priorities in the 
calcination process. According to the recorded 
data from an industrial rotary alumina kiln in 
China, 1174°C of MST is the primary goal in the 
calcination process. Considering about its 
standard deviation (shown in Table 1), the 
allowable range of MST is designed as 1174°C ± 
20°C. 263°C of MTI is the secondary objective 
in the calcination process. Considering about its 
standard deviation (shown in Table 1), the 
allowable range of MTI is designed as 263°C ± 
11°C. If the values of MST and MTI were out of 
its range, the product quality would be adversely 
influenced severely. Hence, the related weights 
of w1 and w3 should be increased when the 
values of MST and MTI are out of their ranges. 
Thus, several control laws of the weighting 
values adjustment are designed as follows: 

 
If ｜MST – 1174｜ ≤ 20, then w1 = 1; 
If ｜MST – 1174｜ > 20, then w1 = [(MST – 
1174)/20]2; 
If ｜MTI – 263｜ ≤ 11, then w3 = 1; 
If ｜MTI – 263｜ > 11, then w3 = [(MTI – 263)/11]2. 
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    The purpose of the control scheme is to 
stabilize the work condition in kiln, which 
eventually achieve the goals of uniform quality 
clinker, high fuel efficiency, and long refractory 
life. The term “stable kiln work condition” 
means the conditions in kiln only have very 
small changes, or no changes at all. An upset 
condition is caused by large fluctuations in MST 
and MTI temperatures or frequent large changes 
in manipulation variables (e.g. FR and KR). So, 
the purpose of Equation 11a is to minimize the 
changes of kiln work conditions subject to the 
search of the optimal solutions in Equation 11b 
and the ranges of ΔFR and ΔKR.  
    In Equation 11a, we design the weighting 
coefficients of w1 to w3 that are used to enhance 
the stable kiln work conditions. For example, we 
assume an upset condition that ｜ MST – 

1174｜ > 20, then w1 will be increased to [(MST 
– 1174)/20]2 from 1 (Please check the control 
laws above). Since the objective of Equation 11a 
is to minimize the summation of three terms, the 
optimal value of yMST solved by Equation 11b 
must be closer to the target temperature of 
1174°C under the effect of the increased value of 
w1 , while the optimal value of (σMST)2 must be 
smaller. At the same time, Equation 11b will 
generate the optimal results for the manipulation 
variables to handle this upset and return the kiln 
to a stable condition. 

4.5 Results and discussion 

A 550-minute sample was collected from 
IRAKP to verify the functions of DRSPC. The 
sample contains 100 sub-samples of duration Δt 
with several disturbances. MATLAB software 
was used for the above optimization of DRSPC. 
The duration of each optimization is only several 
seconds that far less than 5.5 minutes of the 
designed sampling interval of Δt, which means 
an operator or auto-controller has enough time to 
correct the operational errors according to the 
optimal results from this optimization model in 
real operating conditions.  

   Multiple control targets of the MST and MTI 
are simultaneously considered in the DRSPC. 
Fig. 3 shows two observed MST curves that 
obtained from the manual control system and 
DRSPC system. The curves illustrate that all 
large deviations of MST in the manual control 
system are considerably reduced in the DRSPC 
system, which will contribute to high quality 
products. The main reason of reducing the 
deviation of MST may be the DRSPC system 
subjects to a constraint of minimizing the 
deviation of MST. 

Fig. 4 displays two observed MTI curves 
obtained from the manual control system and 
DRSPC system. The curves indicate that all 
large deviations of MTI in the manual control 
system are reduced in the DRSPC system, but 
this reduction is not as good as that of MST 
curve in Fig. 3. The reason might be: (1) the 
DRSPC models were regressed from the dataset 
of previous corrected operations of the IRAKP, 
and these corrected operations were directly 
measured based on the value of MST rather than 
MTI; (2) in this study, most MST are below the 
target temperature (1174°C) but most MTI are 
over the target temperature (263°C), which 
results in a control conflict. For example, we 
need to increase MST while decreasing MTI, 
where increasing MST requires improvements in 
FR and KR, but decreasing MTI requires drops 
in FR and KR; (3) due to the deviations of MST 
is larger than the deviations of MTI. According 
to the control laws, the weight value of MST 
will be greater than that of MTI, which would 
result in the deviations of the MST have a larger 
reduction in the DRSPC optimization. As 
mentioned in the previous section, the product 
quality of sintered alumina is greatly influenced 
by the maximum sintering temperature [4, 25], 
which means the less MTI reducation will not 
affect the product quality. 
   Various weight ratios are designed to check 
the optimal sensitivity of weight. Table 4 
illustrates the simulation results of varioius 
weight ratios which can be summarized as:  
(1) from the experiments #1, #3, #4,  and #6, it is 
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Figure 3.  MST results of manual control and DRSPC control 
 

 
Figure 4.  MTI results of manual control and DRSPC control 

  

found the weight of the MST (w1) can result in 
more optimization sensitivity than the weight of 
the MTI (w3), which means that MST control is 
more effective than MTI control in improving 
the quality of sintered alumina; 
(2) from experiments #4 to #7, it is found that 
control both of MST and MTI is better than only 
control of MST in improving the product 
quality;  
(3) from experiments #7 to #10, we found that 
the weight ratio of (w1: w2: w3 = 100: 1: 100) is 
more efficitive than the weight ratio of (w1: w2: 
w3 = 1000: 1: 1000) in optimizing the product 
quality; 

(4) there is a tradeoff between the temperature 
control and energy consumption.  
(5) from the experiment of “ContLaw”, it is 
found that the control laws make considerable 
contributions to the process control.  
   Since the rotary kiln studied in this paper is a 
long refractory cylindrical vessel that takes 40 – 
50 minutes to transport raw material from the 
feeding end to the sintering zone, the under-
heated or over-heated materials will 
consequently effect on the sintering quality in 
the sintering zone after this 40 – 50 minutes 
transportation. The original manual control 
system only sets a single sintering temperature 
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target for maintaining MST, which could result in an unstable operation 

Table 4. Results for variations of the weighted coefficients 
 w1 w2 w3 MST 

(°C) 
MTI 
(°C) 

ΔFR 

(RPM) 
ΔKR 

(RPM) 
Target - - - 1174 263 0 0 

1 0 0 1 1125 277 -137.7 -150 
2 0 1 0 1139 295 0 0 
3 0 1 1 1140 295 0.8 -0.8 
4 1 0 0 1161 293 61.6 -29.7 
5 1 0 1 1165 292 45.3 -54.7 
6 1 1 0 1145 295 10.8 -6.8 
7 1 1 1 1146 294.5 11.3 -7.6 
8 10 1 10 1158 293.1 33.5 -32 
9 100 1 100 1165 292.1 43.3 -51.4 
10 1000 1 1000 1166 291.6 45.1 -54.4 

ContLaw 5.76 1 12.76 1157 293.2 27.4 -32 
                                          Note: 1. the parameters are chosen from the record of 08/1/23 17:33; 

               2. the original values of parameters are: MST(1126°C), MTI(302.3°C), 
                                                        GTO(514.6°C), FR(1187.6 RPM), KR(539.4 RPM). 
 
condition [28]. Our experiments (#4 to #7) show 
that a simultaneous consideration of multiple 
control targets could address the problem of 
unstable operation. The developed DRSPC 
system has two temperature targets for MST 
(1174°C) and MTI(263°C), respectively. These 
two control targets resulted in a stable operation, 
and the temperature of MST was controlled 
within a narrow range of 1120°C to 1180°C 
(shown in Fig. 3). Comparing with the allowable 
temperature range of MST (1055°C to 1250°C), 
the stable temperature of MST can ensure a high 
quailty of sintered alumina. 
    In practical applications, some indirect indices 
were used to estimate the temperature in the 
burning zone of a rotary kiln such as use flame 
image method [26]. However, these indirect 
indices may cause some measurement errors due 
to the high temperature and heavy dusty 
environment along the rotary kiln.  In this 
DRSPC, two target temperatue values of MST 
and MTI are obtained by averaging the values of 
the recorded temperature, which can statistically 
eliminate the measurement errors of the 
temperature. The quailty of sintered alumina is 
then improved. 
     Stability is an important issue for a control 
system [34-36]. The considered rotary alumina 
kiln obviously is a bounded input bounded 
output (BIBO) system because the input 

parameters and the output or response 
parameters (MST and MTI) are bounded by 
certain value ranges. The system is stable and 
controllable if we can determine the suitable 
input-output control loop pairing [37]. This 
suitable input-output contol loop pairing can be 
found because we can obtain expected state 
values of the auxiliary measurements (MST, FR, 

KR, GTO and MTI) though operating the inputs 
of manipulated variables (ΔFR and ΔKR) based 
on initial states of the auxiliary measurements; 
also because we can estimate previous states of 
the auxiliary measurements (MST, FR, KR, GTO 

and MTI) though observing the outputs of 
responses of MST main (yMST) and their standard 
deviation (σMST) which shown in Figure 3. 
Therefore, the studying IRAKP also is an 
internal stable system. 
 
5 Conclusions 
This paper has presented a Dual-Response-
Surface-Based Process Control (DRSPC) system 
for the practical applications of IRAKP in a 
novel manner. By applying the DRSPC the 
forecasting of the kiln’s work condition and 
optimal manipulated parameters at each control 
time interval are generated. The developed 
DRSPC has the following properties: 

 Multiple objectives include optimizing 
product quality, minimizing energy 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2020.19.26 Wei Peng, Rene V. Mayorga

E-ISSN: 2224-2678 209 Volume 19, 2020



 
 

consumption, and minimizing 
temperature fluctuations.  

  Rapid optimization due to the DRSPC 
only involves quadratic models. 

 Robust results due to the standard 
deviations of the responses are 
considered. 

 The unstable operation problem is solved 
by designing multiple control targets of 
the MST and MTI simultaneously. 

       The proposed approach has been applied to 
a real case study of an industrial rotary alumina 
kiln in China. The control laws are designed for 
this DRSPC system to make considerable 
contributions to the kiln process control. The 
results can provide a solid basis for guiding the 
real-time process control of industrial rotary 
alumina kilns.  
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Symbols Used 

α [-] Element of Matrix  
β [-] Element of Matrix 
g0 [-] Appropriate scalar 
h0 [-] Appropriate scalar 
g [-] Appropriate vector 
h [-] Appropriate vector 
G [-] Appropriate matrix 
H [-] Appropriate matrix 
S [-] Vectors of the input 

variables 
S’ [-] Transpose vectors of the 

input variables 
SL [-] Lower bound vectors of the 

input variables 
SU [-] Upper bound vectors of the 

input variables 
MST [℃] Maximum sintering 

temperature 
MTI [℃] Raw material temperature 

at the kiln inlet 
y [℃] Mean of MST and MTI  
σy [℃] Standard deviation of MST 

and MTI  
w [-] Weight coefficient 

TMST [℃] Target temperature of MST 
TMTI [℃] Target temperature of MTI 
ΔFR [kw/s] The change of fuel flow 

rate 
ΔKR [kg/s] The change of kiln feed rate 
Δt [s] Sampling interval time 
ΔT [s] Product quality measuring 

interval time 
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